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1.0 Introduction

This report covering the period of Jan 1988 to Dec 1988 contains

the results of research on two topics, the adaptive photosensor

array model and initiation of target tracking in a high clutter,

high target density environment.1
/

The photosensor model was oiginated by Michael H. Brill as a

model for a biological retina. However, the adaptivity of the

model retina's spatial and temporal resolution to light level,

and the model retina's adaptive contrast sensitivity would be

advantageous in SDI sensors, which must maintain function in the

faoe of large, sudden and non-uniform light level changes.

'The retinal model is not tied to any particular electronic

technology, and could conceivably be implemented in silicon with

either bipolar or MOS technology. Our preliminary investigation

of implementation issues is presented in Section 2.0.

The problem of tracking multiple targets occurs not only in SDI

but also in natural and robotic vision. In psychology the

problem is called the "correspondence problem" because in

successive looks at a complex moving scene, the visual system

must find corresponding objects in each look to perceive the

objects as moving. Exactly how the visual system makes this

correspondence is unknown. However, any animal that moves solves

the problem, because nearby objects have higher apparent

velocities than distant objects. > For example, birds must solve

the correspondence problem in order' to land on a tree branch.

When there is a large number of moving targets in a scene, as in

SDI midcourse scenarios, solving the correspondence problem is a

major computational burden. There are three reasons for the

severity of the problem. One is the large number of pixels that

must be monitored for targets. Another is the high target



density and high density of false targets introduced by

background clutter. The third reason is the long period,

typically a few seconds or more, between looks at the scene. The

large number of pixels that must be monitored implies scanning,

as opposed to staring, focal plane arrays. The re-visit time

between successive scans by a given target (sometimes called the

frame period) is too long for targets A, B, C etc. on one frame

to be unequivocally identified on the next frame. The presence

of noise events that mimic targets on both frames further

confuses the situation. In the sensor industry, this

correspondence problem is known as "frame-to-frame association"

or as "scan-to-scan correlation". Since the basic problem is

solved by natural vision systems, we are applying insights from

visual processing to the SDI target tracking problems (Section

3.1).

Performance evaluations are an integral part of any technology

development program. We have begun evaluating candidate track

initiation algorithms in terms of the ROC methodology. ROC

stands for Relative Operating Characteristic; the method was

originally introduced to evaluate radar displays; subsequently it

has been accepted as a method for evaluating medical diagnostic

techniques. This work is presented in Section 3.2. In Section

3.3 we present our work and plans for simulations of tracking

algorithms.
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2.0 Implementation of An Adaptive Photosensor Array

The adaptive photosensor array model of Brill is illustrated in

Figure 1. It consists of a lattice of photosensors which are

connected to a resistive network. The resistive network performs

spatial averaging. Temporal processing is performed at each

photosensor with a push-pull circuit that differences the present

and recent past signal levels. The temporal and spatial

operations are made adaptive to light level by adaptation of

resistor values. See Brill, Bergeron and Stoner, "Retinal Model

with adaptive contrast sensitivity and resolution," pp 4993-4998,

Applied Optics 26 #23 (1987).

To implement the model as a working circuit, many choices must be

made. Is the technology bipolar or MOS? Is the processing

distributed at each photosensor, or are the signals multiplexed

and processed at a small number of higher speed circuits? Is the

processing analog or digital? If analog, is the processing

performed in continuous time, or in discrete time steps (sampled

analog). Our preliminary answers to the implementation question

are provided below in Section 2.1 and 2.2. As a prelude to this

discussion we first discuss problems with the conventional

approaches to image sensing. In a conventional staring or

scanning system, analog signals are fed to an analog/digital

converter located very near to the focal plane array. In a

staring array, it is necessary to perform parallel-to-serial

multiplexing to channel the signals to a common A/D converter.

Since detector arrays are imperfect, it is necessary to correct

the signals for offset biases and gain variations, either before

or after A/D. Typically this is accomplished by recalling from a

digital memory the offset bias corrections, and performing

subtractions on the serial, analog data stream, and then

performing the gain corrections in a similar manner with a

Multiplying A/D Converter (MDAC). These high speed, hybrid

analog-digital operations must be performed close to the detector
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FIGURE 1. A photosensor array with adaptivity to light level. A
resistive network provides coupling between
photosensors to reduce the impact of photon noise at
low light levels. This coupling is reduced at high
light levels because the resistivity of eachphotosensor is reduced as the light level increases.

Contrast is maximized at all light levels by the
push-pull mechanism of the individual photosensors.
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array in order to convert the data to noise immune digital form

before it is carried off the sensor gimbal. Otherwise RF pick-up

and EMI on the data link would be more likely to corrupt the

signal levels. All of this high-speed processing deposits watts

of power near the detector array. This is a serious engineering

problem for infrared detectors which must be operated within a

few tens of degrees Kelvin of absolute zero. Every watt of heat

carried away from the focal plane array requires from 100 to 5000

watts of input power to the cooling system. The severity of the

problem is indicated by the tens of watts which high-speed A/D

converters dissipate. (Note see the Infrared Handbook, Section

15.2 for the ratio of produced cooling power to supplied power

for various cooler types. The numbers we quoted above are

typical for a Gifford-McMahon cooler operatirg over a temperature

range of 10 to 77 degrees Kelvin.)

The above discussion illustrates the importance for infrared

detectors of reducing the bandwidth of the data exported off the

chip or off the sensor gimbal. Professor Carver Mead of the

California Institute of Technology has identified another reason

for performing certain operations on the chip, before A/D

conversion. To reduce the bandwidth of the raw image data, delta

modulation techniques may be used, which pass along only the

changes in the signal values. This is nearly the same as taking

the temporal or spatial derivatives of the raw imagery. If the

data is available as continuous time signals, a simple RC

differentiator circuit or op-amp circuit can perform the

differentiation in time. However, if the data is sampled in time

steps for A/D conversion, the time step must be small enough to

permit accurate numerical differentiation of the digitized

samples. The differentiation step is also noise sensitive,

because it involves taking the difference of nearly equal

quantities. It would therefore be best to perform the

differentiation while the signals are in analog form, and then to

digitize at a relatively low bandwidth. This appears to be the
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strategy used by the human eye since graded potentials are

involved at the photoreceptor, horizontal cell and amacrine cell

levels; only after the differentiation and change detection have

been performed does the signal flow reach the retinal ganglion

cell, where an action potential (spike) is produced for output

along the optic nerve to the higher level processing center in

the lateral geniculate nucleus.

We now go on to short discussions of two options for

implementation of the photosensor array -- first an

unconventional fabrication involving photoconductors, and then an

approach using MOS processes.

2.1 Concept for an Adaptive Photosensor Array Circuit Using
Photoconductors.

Although standard integrated circuit processes do not incorporate

photoconductive materials, we have found that photoconductors

provide a simple circuit design. Later we will discuss how the

photoconductors might be replaced by MOSFETs biased in the triode

region, and how the RC differentiators and integrators in the

circuit might be replaced by MOS op-amps. This translation of

the photoconductor circuit would then be entirely based upon MOS

devices, and should be a practical design. However, the

complexity of the MOS circuit obscures the principles of the

adaptive photosensor array, which are more clearly visible in the

photoconductor version, shown in Figure 2. Since the circuit

uses just four types of devices, photoconductors, resistors,

conductors and capacitors, it might be feasible to fabricate it

with thin-film processes, since photoconductors such as CdS have

been used in experimental spatial light modulators, and in

commercial photocells for nightlights and cameras.

The circuit is inspired by the Brill retinal model, but uses the

principles, rather than the mcchanisms of the model. For example

in the model retina, the temporal derivative of the light level
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Figure 2. Circuit concept for an adaptive sensor array. One
photosensor is shown, the array is coupled
spatially through a resistive net that performs
spatial averaging at low light levels. The
variable resistors might be implemented with
photoconductors, or by MOS circuitry. The circuit
at (a) provides a voltage division which is ac
coupled through the capacitor at (b). Signal
integration is provided by the capacitor at (a).
The variable resistor at (c) serves to vary the
coupling of the photosensor to its neighbors
through the resistive network. At low light
levels, the network is more conductive than the
variable resistor, and so the network provides
tight coupling. The opposite is true at high
light levels.
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is obtained by a push-pull circuit that obeys the chemical

kinetics of excited photopigment. From the model, we learn the

importance of the temporal derivative, but we obtain the

derivative with an RC differentiator in the photoconductor

circuit, or an op-amp in the proposed MOS implementation.

The photoconductive circuit concept of Figure 2 requires four

devices, which may be fabricated as follows:

1) photoconductors made by vacuum disposition of CdS,

2) resistors made from light-shielded photoconductors to
provide a measure of temperature compensation to the
design,

3) conductive lines of vacuum deposited of aluminum,

4) capacitors made of vacuum deposited aluminum insulated
with silicon dioxide (from the oxidation of
polysilicon).

The output of the resistive net is the voltages of each node.

Our ultimate goal is to perform local processing on these

voltages to extract image features such as local texture, edges,

motion, etc. The transmission of image features rather than

pixel level values would greatly reduce the bandwidth of the data

channel connecting the sensor chip with a higher level image

processor. However, at the present time, methods of performing

feature detection on the sensor chip are not ready for

implementation. We must therefore think in terms of reading out

the voltages at each node, and processing for features with a

digital or optical computer.

To readout these voltages, we propose either parallel optical

readout or serial readout by means of cross-bar x, y addressing

of each node. For optical readout, the resistive net would have

to be part of a sandwich with the detector array on one side, and

the voltage driven spatial light modulator on the other side.

For serial readout, the nodes of the resistive net must be
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switched into contact with a voltage sensitive readout device

such as an FET. A crossbar system, such as that shown in Figure

3 might be used to address the MOSFET switches +hat connect each

network node to the readout FET. This readout system could be

fabricated as an underlying layer of the photoconductor array.

2.2 Implementation of an Adaptive Photosensor Array with MOS
Processes

In the previous section, we have suggested a straightforward

approach to implementing a resistive network, by using a light

shielded photoconductor strip. Other passive materials should

work, for example, polysilicon or ion implantation strips.

Indeed, these two approaches are used to fabricate resistors on

integrated circuit analog-to-digital converters. See for

example, Bernard Loriferne, Analog-Digital and Digital-Analog

Conversion, pp 165-170 (Heydin and Son, Ltd., 1982). However,

the low resistance values obtainable, and the difficulties in

obtaining precise resistor ratios has led the analog processing

community to seek other techniques.

Since an MOSFET biased in the triode region provides appropriate

resistive values, this is an attractive option. The circuit of

Figure 2 uses photoconductors for light controlled resistors and

fixed resistors. It is therefore possible to use this basic

circuit with MOS processes, provided that the fixed resistors are

implemented as biased MOSFETS, and the photoconductor resistances

are implemented by arranging a light sensitive MOS device to

control the bias on a MOSFET. Figure 4 shows the biasing of a

MOSFET to provide a resistor. The nonlinearity of this circuit

may be greatly reduced by clever use of symmetry as discussed by

Y. P. Tsividis in DesiQn of MOS VLSI Circuits for

Telecommunications, Chapter 11, "Continuous-Time Filters,"

Section 2, "Processor Continuous-Time Filters," (edited by Y. P.

Tsividis and P. Antognetti, Prentice-Hall, Inc. Englewood Cliffs,

NJ, 1985).
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Figure 3. An x-y addressed crossbar arrangement may be used
to serially readout the voltage at nodes the
resistive net. A high input impedance readout
device such as an FET is needed to avoid
disturbing the network voltages.
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gate

source drain

Figure 4. An MOSFET biased in the triode region operates as
a resistor.
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In the conceptual photoconductor circuit, temporal

differentiation and integration is obtained with simple RC

circuits. However these circuits are lossy. Since MOS

fabrication provides op-amps as a basic building block, these RC

filtering principles may be carried over to the MOS

implementation, without incurring the undesired signal losses of

simple RC filters.

In the foregoing discussion of the photosensor array, a square

array has been assumed. Section 5, Appendix on Image Sampling

Theory for Hexagonal and Square Sampling Arrays, shows that the

sampling theorem may be satisfied with approximately 0.866 of the

pixels needed with square pixels if hexagonal pixels are used.

The resistive network concept carries over to hexagonal arrays,

and so the implementation thoughts presented above are applicable

to hexagonal photosensor arrays. Not only is the pixel count

reduced, but this reduction very likely will result in a

reduction in subsequent data processing. Moreover, the

acquisition range for detection of a point target should be

increased, because of the increased size of hexagonal pixels

compared to square pixels (with both the hexagonal and square

sampling arrays satisfying Nyquist). The ratio in area is

approximately 1.15.
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3.0 SDI Tracking

3.1 Application of Early Visual Processing to SDI Target
Tracking

Statement of the Problem

Each of the three phases of SDI defense poses a different

tracking problem. In boost phase, the targets are bright and

easily detected. But the booster plume that is detected is

centered 100's of meters away from the hard body we must

intercept. The problem is to find and track the hard body. In

midcourse, the problem is the sheer number of targets to be

tracked. This is the problem we have focused on. The re-entry

phase tracking problem is difficult because high altitude nuclear

bursts may occur. The ballistic warheads are not disrupted by

the glowing and highly structured (striated) disturbed atmosphere

created by a high altitude nuclear burst, but the tracking system

must operate in the presence of bright background clutter.

Resolution of the Midcourse Track Indication Problems with Early
Visual Processing

A scanning sensor must be used to acquire targets during mid

course, because staring sensors are impractical over the large

field of regard that must be covered. Since individual targets

are not tracked continuously, frame-to-frame correlation is

performed to sort out consistent trajectories among all of the

possible associations between target detections on successive

frames. See Figure 5. The problem is complicated by the

presence of false target detections, and missed detections. To

remain non-committal about the threshold exceedances used to

detect targets, we shall use the word "hit" to refer to a

detection. A hit may actually be a false alarm.

13



a. ba b
C

e f

frame at tI  frame at t2

Figure 5. To find trajectories of targets found on successive

image frames, the targets (a through f) detected at tl,

must be associated with the detections at t . Since

the velocities of targets are unknown initially, large

"windows" are placed around their original locations to

make the associations. The association of target d can

be made, since only one detection occurs inside the

window for d. However, targets in overlapping windows

(a, b and b, c) cannot be unambiguously assigned with

detections at t I. Other problems are noise events, new

targets, and targets moving off the frame.
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Analysis shows that the number of candidate tracks to be sorted

out in the frame-to-frame correlation process grows as the hit

density to the 3rd or higher power. If the hit density is low,

three successive frames suffice to identify most of the

inconsistent tracks, because the first two frames provide an

estimate of the hypothetical target's angular rate, and the third

frame will either show a target close enough to the expected

position or not. But at higher hit densities, the presence of

one or more hits within the boundaries of a consistent trzck

forces the examination of additional image frames before a track

is confirmed. If m frames must be jointly processed to confirm

tracks, the processing grows as the hit density to the mth power,

when the hits are individually processed.

The midcourse targets are not completely independent, however.

Each post boost vehicle may release hundred of targets, mostly

decoys. This leads to a natural clustering of the targets which

can be exploited to reduce the processing load for track

initiation. It may even turn out that the decoys fill out gaps

between RVs and help to distinguish the target clusters arriving

from each post boost vehicle, so that the decoys help, rather

than hinder track initiation processing!

In human vision, motion and depth perception is performed at an

earlier processing stage than pattern recognition. Segregation

of imagery by motion is an every day experience. We can perceive

a flock of birds and gauge their aggregate flow without

concentrating on individual birds. If two flocks of birds

criss-crossed we would have no difficulty following one flock's

motion. Yet this is exactly the sort of target tracking

situation that is stressing for frame-to-frame correlation

algorithms that work at the individual target level.
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Using random dot stereo pairs, which offer no monocular cues,

Julesz showed that stereopsis can also occur before pattern

recognition. We seek to endow SDI trackers with a similar

capability.

One can conceive of other vision-like image segregation processes

to assist track initiation, for example spectral classification,

in analogy to color, or classification by target brightness or

polarization. In re-entry phase, spectral pre-processing may be

useful for clutter reduction in the presence of a nuclear

disturbed atmosphere, for example. We have chosen motion and

depth because they fit the midcourse tracking problem well.

The application of vision-like stereo and motion processing to

midcourse image frames will benefit the track initiation process

in two ways. Stereo processing will allow target complexes to be

segregated in depth, so that within a given depth, the target

density will be reduced. Subsequent frame-to-frame processing

will therefore require less throughput. Motion segregation of

target clusters will allow the approximate angular rates of

targets within clusters to be estimated before the processing of

individual targets is begun. These preliminary target angular

rates will be much more accurate than a priori upper bounds.

Therefore, the number of chance hits falling within the

tolerances about an expected target position on the next frame

will be reduced, and so fewer candidate tracks must be followed

to identify the consistent tracks.

The proposed track initiation process is thus a combination of

early visual processing for depth and motion to find target

complexes, followed by conventional target association from

frame-to-frame within each target complex. After consistent

tracks have been established for targets, precision tracking is
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performed by a Kalman filter or a Kalman filter operating with

the Joint Probabilistic Data Association (JPDA) algorithm. The

JPDA algorithm is useful in maintaining track in the presence of

criss-crossing tracks. However the computational load required

for JPDA prohibits its use for track initiation when there is a

high hit density. The JPDA algorithm has the weakness that it

does not extract and use the target clustering information

provided by motion and depth segregation.

3.2 Performance Evaluation of Candidate Tracking Algorithms

In the following section, ROC calculations are made to evaluate

tracking algorithms. The algorithms are reduced to one angular

dimension, rather than two (azimuth and elevation), but this

should not invalidate the rankings of algorithm performance.

The findings of the evaluations may be generalized by one

commonsense conclusion: all of the information should be used.

The information available from a scanning sensor is the signal

level at each pixel at discrete times tl, t2...

Image processing algorithms that search for target streaks in

superimposed frame images do not use the time sequence

information, and the evaluations quantify the penalty this

omission incurs. Another type of information is the signal

level. Ideally, the signal strength at each pixel would be used

in the track detection processing; however, some algorithms work

only with the thresholded frame data, which reduces all candidate

target events to a common level.

In the future, we intend to improve the analysis of tracking

algorithms by more accurately modelling the image collection

characterisics of scanning and TDI (Time Delay and Integration)

sensors. Towards this end we have completed an analysis of the
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operation of a scanning sensor which is designed to satisfy the

sampling requirements for a band limited image. This work is

presented in Section 4.0, Appendix on Image Collection by a

Scanning Sensor.
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Performance Comparison of Rival Track Detection Procedures

Any method of validating tracks is vulnerabl to chance
"hits" masquerading as a valid track. However, there are

wide variations in reliability among rival track validation

techniques. At low hit densities, the probability of a

chance sequence of hits masquerading as a track will be low,

and reliability may not be as important an issue as others,

such as ease of implementation. But at high hit densities,

reliable track validation is essential.

The simplest track validation procedure is streak detection.

Usually this method is applied to an integrating, staring

sensor, such as a photographic camera. However, successive

image frames from a scanning sensor can be superimposed to

approximate the type of imagery provided by a staring sensor

with a long integration period. The basis of streak

detection is that an actual target will follow a smooth

trajectory, and short segments of this trajectory will be

nearly linear. Therefore, a line detecting procedure such

as the Hough transform technique can be used to detect the

track. If a priori knowledge of the ballistic trajectory of

the targets is available, it should also be possible to

offset the individual image frames from a scanning sensor

before they are superimposed, so that typical curved tracks

are more or less straightened out into linear tracks. The

Hough transform procedure integrates image points, i(x,y)

that fall along straight lines. These straight lines may be

parametrized by their slope, m and y axis intercept, b:

H(m,b) = fdxfdy 1(x,y) 6(y-mx-b).

The Dirac delta function 5(y-mx-b) picks out only those

points in the image which lie on the line with slope m and y
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intercept b to form the Hough transform value H(m, b). If

there is a streak along this line, the Hough transform value

will be above average, so that a threshold, T, may be

selected to declare tracks whenever H(m,b) 1 T.

The Hough transform is attractive from the standpoint of

implementation. For example, a rotating cylindrical lens

might be used to compute the line integrals of images

displayed by a spatial light modulator, such as a liquid

crystal device. Calculations provided below will show,

however, that the Hough transform streak detection procedure

is not reliable for track validation at high hit densities.

The weakness lies partly in the streak data, and partly in

the Hough transform. Two dimensional streak imagery does

not provide information about the streak development over

time. Hence nonsensical hit patterns that by chance fall

along lines on the superimposed frame image will be

classified as valid tracks. The Hough transform is also a

weak criterion for track validation with a framing sensor.

Rather than testing for streaks in the superimposed frame

data, we should test for regularly spaced, collinear arrays

of hits, because targets in ballistic motion should have

nearly uniform angular rates over the integration period,

and successive frames will catch targets at discrete

locations along their tracks.

An algorithm that tests for regularly spaced collinear hits

is the generalized Hough transform,

H (m,b,f,p) - jdxjdy i(x,y) r(x,y,m,f,e) 6(y-mx-b),

where r(x,y,m,f,O) is a masking function like a ronchi, that

has "opaque and transparent" bars (r=O and r=l). The

masking function has a fundamental spatial frequency of f,
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spatial frequency phase 0, and the bars are oriented

perpendicularly to lines of slope m. If a biased cosine

function 1/2(1+cos(2rf+e)) is used for the masking function,

the transform will be identical to a generalized projection

(see references by Stroke, Farhat) and may be implemented

optically. The masking of the Hough transform line

integrals to search for regularly spaced hits, rather than

randomly spaced hits greatly increases the reliability of

track validation with superimposed frame data.

However, false tracks will still be declared whenever random

hits on the individual frames happen to line up with a

regularly spacing when the frames are superimposed. To

eliminate chance hits that masquerade as a regularly spaced

linear track on the superimposed frames, but do not follow a

consistent trajectory in time, we must preserve the track

history. This may be done by stacking the successive frames

along the third dimension to represent the time sequencing

of the data. We now introduce a track detection procedure

which processes such 3-D data.

Figure 1 provides an illustration of the 3-D track detection

approach. Successive frames from the scanning sensor are

stacked along a time axis to provide a 3-D record of the

data. Over a short enough data collection period, ballistic

targets will form nearly collinear tracks through the 3-D

record volume. These tracks may be detected by a 3-D

generalization of the Hough transform. See Figure 1. Since

a shadowcasting implementation of the 3-D Hough transform

may be easily devised, as shown in Figure 2, other, more

precise optical implementations should be possible. A

compromise 2-D implementation shown in Figure 3, uses a

series of isometric projections of successive frame data

onto 2-D. As shown in the figure, the stacking of
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t ime

Figure I. A berics of frame images provides a record

in space and time of the target motion. This record
may be displayed by stacking the image frames along a
time axis as shown above. Over short periods, ballistic

targets will exhibit nearly collinear tracks through

this 3-D volume. A 3-D version of the Hough transform

may be used to detect the tracks.
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detected

" 0 1

0~0
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time axis0

Figure 2. A shadowcasting arrangement to identify
collinear tracks in space and time. The sequent ial
image frame data is stacked along a time axis and
displayed as opaque masks except for transparent holes
marking each detection. This scheme is severely
limited by diffraction, but it may be improved by
replacing every other mask by a holomask, with holo-
lenses marking the locations of hits.
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frame I frame 2 frame 3 frame 4

frames stacked in 0

registration; two
tracks are apparent •009

a second isometric
display reveals
inconsistencies in
one of the two tracks --

t..

Figure 3. The 3-D space and time track record may be
displayed as an isometric projection in 2-D. On any
single display, an inconsistent pattern of hits may lie
on a collinear track, but this false track falls apart
as the isometric display is changed.
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successive frames for subsequent Hough or generalized Hough

transformation can be performed with perfect registration,

or with a frame-to-frame offset that progressively shifts

later frames along a pseudo-time axis, as in an isometric

display. On any single isometric display, extraneous hits

may fall by chance along a line, masquerading as a track.

But this chance track falls apart as the isometric display

is rotated, by stretching or shrinking the offsets between

frames that introduce the pseudo-time axis. If we require

that a track persist on two or more settings of the

isometric display, most of the capability of the 3-D track

procedure to screen out extraneous hits is achieved, without

the need to process data in 3-D.

ROC Curve Computations for Track Validation

The rival track detection procedures,

* streak detection by Hough transform
* generalized Hough
* 3-D track detection
" track detection with multiple isometric displays

differ in their capability to screen out false tracks.

Criss-crossing trajectories and noise contribute hits that

by chance may line up and masquerade as a valid track. With

a given procedure, a trade-off must be made between

detecting valid tracks and rejecting false tracks, and this

tradeoff will be more favorable for one procedure than for

the others.

The Relative Operating Characteristic or ROC curve provides

a quantitative way to represent the tradeoff. The ROC curve

plots the probability of detection against the probability

of false alarm. To illustrate the idea, Figure 4 gives
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Fig. 1 (top). The ROC 1.0
graph, in which the true-
positive proportion is , ,,
Plotted against the false-
positive proportion for
various possiblc settings
of the decision criterion.
The idealized curves
shown correspond to
the indicated values of C 0.4

the accuracy measure A. .
Fig. 2 (bottom). Exam-
pic of empirical ROCs, .
showing standard and *
enhanced interpretations
of mammograms. 

1.

TAKEN FROM:

John A. Swets, " 0.s

Measuring the

Accuracy of

Diagnostic 0,$

Systems,
Science, p128 7 ,

3 June 1988. 0.4

0.2 X V Standard
0 a Enhanced

0
0 0.2 0.4 0.0 o.S 1.0

b'(b~d), Fa)l-posihlvo proportion

Figure 4. Representative ROC curves.
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typical ROC curves from a review article. (See "Measuring

the Accuracy of Diagnostic Systems, by John A. Swets,

Science, p1285, 3 June 1988.) Ideally, the detection

procedure will attain a probability of detection of nearly

1.0 while incurring a very low probability of false alarm.

In such a case, the ROC curve will closely hug the upper

left boundary of the ROC plot. On the other hand, a

detection procedure which poorly discriminates against false

alarms will have an ROC curve that falls closer to the

diagonal line. The diagonal corresponds to a totally

useless procedure, such as flipping a coin to decide if a

track is valid.

The probability of detecting a target on any single frame is

less than 1.0, even for targets within the nominal

acquisition range. For the purpose of calculating ROC

curves, we may select a reasonable value for a, the

probability of detecting a target on a single frame. Then

the probability of detecting a valid track may be assessed

as a function of the threshold number of counts required to

declare a track. For example, the following list of

binominal probabilities shows how the probability of

detection for a valid track in the absence of background

events varies with the number of hits required out of m

successive frames:

m out of m, Pd = am

m-1 m
(m-l)or more, Pd = m a (1-a) + a

mn-2 2
(m-2) or more, Pd = m(m-l)/2 a (1- a) +

m a (1-a) + am,

and so on.
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For each of the above detection criteria (m hits out of m

frames, m-i hits out of m frames, etc) a given track

detection algorithm will have a probability of accepting

chance alignments of hits as a valid track. These

probabilities are specific to each of the rival procedures,

and will be calculated below for each procedure in turn.

Then the probability of detection versus probability of

false alarm or ROC curves are computed. A figure of merit

for the entire ROC curve is the area under the curve. This

figure of merit provides a way to rank rival detection

procedures. (See Measuring the Accuracy of Diagnosis

Systems, by John A. Swets, Science, p 1285, 3 June 1988).

With this single number, the area under a ROC curve as a

measure of a track detection procedure's effectiveness, we

can study how the procedure behaves as the hit density

increases, by plotting the ROC curve area versus hit

density. Similarly, the sensitivity of a procedure to other

important parameters, such as the number of jointly

processed frames, or the probability of target detection on

a single frame may be investigated by plotting the ROC curve

area versus the parameter of interest.

Preview of the Scene and Sensor Parameters

All of the track detection procedures will be analyzed on a

common footing. The following parameters will be used:

" d = the background hit density (randomly
distributed) per steradian

" m = number of frames jointly processed to detect
tracks

• x = sensor resolution (radians)
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0 y - upper bound on track length (radians) over m
frame period

* a = probability of target detection on a single
frame in the absence of background events

When necessary for the purposes of illustration, the above

parameters will be fixed at the following values:

d = 105 hits per steradian

m = 10 frames

y = 10- 1 radian

x = 10 - 4 radian

= 0.95 probability of target detection on a single

frame in the absence of background events

For example, with a = 0.95, and m=10, the following values

are obtained for track detection probability (in the absence

of background hits) using the binomial expressions given

above:

Pd m out of m) = 0.5987

Pd ( m-1 out of m) = 0.9138

P d m-2 out of m) = 0.9885

P ( m-3 out of m) = 0.9989

P d m-4 out of m) = 0.9999

In addition to these parameters, we must make some

simplifying assumptions about the data provided by the

sensor. Although these assumptions may appear very

restrictive, our evaluations of rival track procedures

should not be invalidated if we make the same assumptions
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when comparing the different procedures. Our approach is to

make the analysis as independent of sensor parameters and

detailed operation as possible, so that we can concentrate

on the evaluation of procedures for detecting tracks.

In this spirit, we begin our analysis with the simplifying

assumption that a target image always falls inside a single

image pixel, and that the trajectory images fall on a 1-D

strip on the f-cal plane, rather than over a 2-D image area.

These assumptions would be unacceptable if our aim were to

establish the absolute performance of a given track

detection procedure; however, the relative performance of

track detection procedures should not be affected.

As a rule, target detections will be performed as a

pre-processing step on individual image frames before

successive frames of data are jointly processed to detect

tracks. After target detection, a given image pixel will

either register a target detection or not; the original

signal strength is unavailable for subsequent processing.

It is therefore inconsistent to model the track detection

procedures by a statistical procedure that gives a

probability for a given pixel on an individual frame to

register more than a single detection. However, this minor

inconsistency should not invalidate our results when the

target density is very low. We strive to gain insight into

the track detection problem, and to achieve this we begin

with simple analyses, and then refine the analyses step by

step to eliminate inconsistencies and improve our

approximations.

Our analysis will also be non-committal about sensor

parameters and operations, such as the detector spacing,

readout rate, and charge integration or Time Delay and

30



Integration (TDI). A single parameter d is used for the

number of random detections per steradian on an individual

image frame. In this way, we avoid such details as the

selection of a target detection threshold, or the operation

of spike adaptive TDI (to combat background noise from high

energy radiation). Moreover, our parametric analysis

applies equally well to diverse types of backgrounds, such

as high energy radiation, thermal noise, clutter from a

nuclear disturbed atmosphere, or a high density of actual

targets. Since a pixel on an individual frame may declare a

detection from any one of a number of background or target

input events, we use the term "hit" rather that "detection"

to remain non-committal about the actual presence of a

target.

Analytical treatments of the ROC curves for each of the

rival track detection procedures follow. Accompanying each

analytical discussion is an actual calculation of the ROC

curve made with the MathSoft Inc. program MathCAD on an IBM

PCAT. As nearly as possible, the same notation is used in

the discussion and the MathCAD calculation for each ROC.

Note on Mathematical Conventions

In some of the sums given below, the probability of a

negative number of hits is indicated. We set all such

probabilities to zero. For example, in the convolution

m 2-m m
Pa PbS-S')

S)T S'IQ 0 a

if S' is greater than T, then S-S' is negative for S=T. We

31



do not want to include the case of S' positive counts and

(S-S') negative counts.

MathCAD does not allow sums over an index S satisfying a

condition such as SIT. However, we can compute the same sum2
with MathCAD if we use a fixed range for S from 1 to m -m,

and set to zero all terms that violate the condition S)T.

MathCAD provides the Heaviside function for this purpose.

Another technique necessary with MathCAD is the recursive

computation of binomial probability expressions. This

avoids overflow which otherwise occurs in computing the

factorials of large numbers.
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ROC Curve Calculation for Streak Detection by Hough

Transform

We first provide an analysis of the probability of false

alarm and the probability of track detection using the

Poisson distribution along with some simplifying

assumptions. At the completion of the analysis, we provide

a critique and then launch into a refined analysis (ROC

Curve Calculations for Hough Transform with Target Detection

on Each Frame).

The Hough transform counts the hits along a track in the

superimposed data from m successive frames. For a track of

length y radians and width x radians (the resolution of the

sensor), the average hit count from random hits will be

xymd, if m frames are superimposed, and the actual number of

counts will follow a Poisson distribution. So the

probability of obtaining n' hits from the background is

given by:

Pbkg(n') = (xymd) exp(-xymd)
n'!

In presence of a target track, there will also be hits from

the target. The probability of getting n hits along the

track from some combination of the background and the target

is given by the convolution of the probability distributions

of counts from the background and from the target. Over m

superimposed frames, the probability of getting (n-n') hits

from the target is given by the binomial distribution

function

Ptarget(n-n') ml ()n-n' (1a)m-n+n'

(m-n+n')i(n-n')|
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where a is the probability of receiving a hit on a single

image frame in the absence of a background. Hence the

convolution is given by

n
Ptotal(n) - E Pbkg(n °) Ptarget(n-n')

n=n-m

For a track declaration, the integrated hits along the track

must equal or exceed a threshold value T. Therefore, the

probability of declaring a track in the presence of a target

is given by

my/x my/x n
Pstreak(T) E Ptotal(n) = E Pbkg(n')Ptarget(n-n')

n=T n=T n'=n-m

(The maximum possible number of hits is (my/x) because on

any one of m frames, there are y/x pixels along the track.)

This expression is used to compute the probability of track

detection for a given threshold count.

The probability of meeting or exceeding the threshold with

hits from the background alone is:

my/x T-1
Pfalse(T) E Pbkg(n') & 1 - E Pbkg(n')

n'-T n'=0

T-1
A 1 - exp(-xymd) (xymd)n

n'!

(The approximation is valid for dx2 ((l: if this is not

satisfied the threshold for detecting targeLs on a single

frame is too low!)
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The above expression gives the probability of declaring a

track from chance hits in the absence of a target; i.e., the

probability of false alarm. It is a function of the random

hit density d, the threshold for track declaration, and the

number of jointly processed frames.

Critique: Strictly speaking, our expression for Pbkg(n')

does not apply if "hit" or "no hit" decisions are applied at

each pixel before the image frames are jointly processed to

detect tracks. Our expression gives a small, non-zero

probability for n'>(my/x), and yet for tracks of y/x pixels

in length, at most y/x hits will register, and so over m

integrated frames the maximum possible value for n' is

(my/x). Another shortcoming is our treatment of background

and target hits as independent in the expression for

Ptotal(n). This is consistent with our treatment, since

allows more than one "hit" to a pixel; but after we refine

our treatment to designate a "hit" or "no hit" at individual

pixels, we should include the effects of the background (if

present) when calculating the probability of a hit from the

target.
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MathCAD Computation

of ROC for Track Detection with the Hough Transform

before Pixel Quantization
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First cut ROC curve Computation for Hough Transform Procedure

d 100000 d is the density of hits per steradian

m 10 m is the number of jointly processed frames

-6
x 100 10 x is the angular resolution (radians) of a pixel

y 0.1 y is the maximum track length during m consecutive frames

0.95 .:f is the probability of detection on a single frame in the
absence of a background

b x: y md
b = 10

g 1 ..ceil(20 b) To reduce the needless
g ceil(10 b) computation of insignifi-

cant probabilities, we
seek a maximum count,

g 1 Cmax, above which termsF' _b may be safely dropped.
Cmax m + ceil oot [exp(-b) j

(ceil(g))! _

Cmax = 111

n := 0 ..Cmax

n
(x y m d)

Poisson(n) exp(-x y m d)
n!

Pbkg(n) if(n 0,Poisson(n),0)

1 := 0 .

M! 1 m-1
binary(l) (1 - c:)

(m - i)!Il

Ptarget(l) if(l ± O,binary(l),0)
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.. Omax

Ptotal(i) Pbkg(i - ) Ptarget(1)

T 1. .3 m

Pstreak (T) (Ptotali)(( T))

Pfalse(T) (Pbkg(i)) (§(1i -T))
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Pstreak(T)

0 Pfalse(T)

j 0 .(3 m -1)

midareaF(Pstreak(j + 1)) + (Pstreak(j))-l
midre ((Pf alse (j)) (Pf alse(,i +

2

.Pstreak(3 m) Pfalse(3 m)!
lef tend - --

* 2J

rightend (1 + Pstreak(0)) (1 - Pfalse(0)Vj-
L 2

ROCarea (lef tend + rnidarea + rightend)-

RQCarea =0.481
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Replot with horizontal 1 .. ... .
axis on a log scale to
show behavior at low
values of Pfalse.

Pstreak(T)

-5 log(Pfalse(T)) 0
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ROC Curve Calculation for Hough Transform with Target
Detection on Each Frame

Assume m frames are separately thresholded for target

detection (hit vs. no hit) and then integrated for track

detection (S > T hits along the track).

For a track length of (y/x) pixels, there are (my/x)

locations for hits. Since there are only two possibilities

at each location, hit or no hit, the number of ways a total

of S hits can be arranged over the (my/x) locations is:

(my/x)!

(my/x-S)! S!

In the following, we will sometimes use M as a shorthand for

(my/x). Each pixel covers a solid angle of x2  steradian,

and so the expected number of hits per pixel is x2d, for a

random hit density of d per steradian. By the Poisson

distribution, the probability of a pixel receiving no hit is

P(no hit) - exp(-x 2d).
bkg

Since the detection process is binary (hit vs no hit) the

probability of the pixel declaring a hit from a random

background event is:

P(hit) = [l-exp(-x 2d].
bkg

Combining the results so far, the probability of a chance

occurrence of S hits from the background along the

integrated track length of y/x radian is

(my/x) I 2 my/x-S

PMbkg(S) - [1-exp(-x2d)] [exp(-x 2d)]

(my/x-S) I SI
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The H in PMbkg is a reminder for (my/x). The probability of

declaring a false track for a threshold count of T is:

my/x
Pfalse(T) = F PMbkg(S)

S)T

In the absence of a background, the probability of detecting

a target on a single frame is taken as a. In the presence

of both a target and background, a hit may be declared from

the background alone, from the target alone or from the

target and background. The probability of not declaring a

hit is the product of the probabilities for not detecting

the target or the background:

Pnohit = [exp(-x 2d)][l-a]

A given target will show up on only m locations in the

superimposition of m frames. Therefore in m locations there

is a target and a background, while in (my/x-m) locations

there is only the background. The probability of obtaining

a count of S' over the m locations where the target is

present is:

m! so m-S'
Ptarget(S') - [Phit] (Pnohit]

(m-S')! S'!

Over the (my/x-m) locations where the target is absent, the

probability of obtaining a count of (S-S') is:

(my/x-m-S+S') (S-S')
(my/x-m)!

PHmbkg(S-S')= [exp(-x 2d] [l-exp(-x2 d)]
(my/x-m-S+S')!(S-S')!

Where the Mm in PHmbkg is a reminder for (my/x-m). The

probability of obtaining a count of S hits in the presence
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of a target is therefore:

S
Ptb(S) - L Ptarget(S') PMnibkg(S-S')

S'mO

and so the probability of declaring a track in the presence

of the target is

my/x
Ptrack(T) E Ptb(S).

S>T
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MathCAD Computation

of ROC for Track Detection with Hough Transform

after Pixel Quantization to One Bit
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ROC curve Computation for Hough Transform Procedure with "hit" or "no hit"
Decisions at Individual Pixels

d 100000 d is the density of hits per steradian

m 10 m is the number of jointly processed frames

-6
x 100 10 x is the angular resolution (radians) of a pixel

y 0.1 y is the maximum track length during m consecutive frames

c :0.95 c: is the probability of detection on a single frame in the
absence of a background

2
U X d

-3
U = 1 10

ww (exp(u) - 1)

ww 0.001

y
M m -

x

4
M 1 10

Cmax := 44 Theoretically, the maximum hit count is M, but we need not
carry the summations to more than Cmax since the probability
of getting more hits is so low.

N (Cmax + m)

S := 0 ..N

PMbkg := exp(-u M)
0
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(M -S) ww
PMbkg =PMbkg

s+1 b ~+1

-15
PMbkg =1.588 10

Omax

P~bkg =1

Mm M m

PMmbg .- exp(-u Mm)

P~mb = Pmbg (Mm - S) (ww)

5+1 S S+ I

k :=-m . .(Cmax + m)

PMmbkg(k) :=if~k - O,PMmfbg *O7
1-15

PMinbkg(Crnax) =1.535 10 1

PMmbkg(O) = 4.586 10

%'PMmbkg(S) =1

Pnohit :=(exp(-u)) (1 c
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Pnohit 0.05

Phit 1- Pnohit

Phit 0.95

1 :=0 ..Mn

Ptarget(1) M! Phit 1Pnohit

(Mn - 1)!.J!

j . .(Omax + m)

Ptb(j) ~ " PMrbkg(i - 1) Ptarget(1)

-10
Ptb(Cmax + 1) 2.843 10

T =0 . .(ceil(4.5 m))

Ptrack(T) "~(Ptb(j)) (7 (i -T))

Pfalse(T) - I4P~4bkg (-V(i -T))

- L j

_PtrackT --Pf a 1 T)
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-13

-14
.-32aOzu

-15

-15

Ptrack (T)

0 PfalsefT)
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3 0 .(3 m -1 )

,; Ptrack(j + 1) + Ptrack(j)
midarea (Pfalse(j) -Pfalse(,i + 1))

2

Ptrack(3 m) Pfalse(3 m)
lef tend -------

2

(1 + Ptrack(O)) (1 - Pfalse(O))
rightend

2

ROCarea (leftend + midarea +- righteid)-
12-

ROCarea =0.481
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I I I I I I I i i -' .. .

thres 0 ..45 1 ... . . . . .. . .

To better visualize the
behavior of Ptrack vs
Pfalse, we re-plot the
ROC using a log scale
on the horizontal axis.

Ptrack(thres)

0i

-15 log(Pfalse(thres)) 0
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ROC Curves for Generalized Hough Transforms with Target
Detection on Individual Frames

A specific target trajectory will be sampled on each of m

successive frames at m regularly spaced pixels. Rather than

integrating "hits" over the maximal track length of y/x

pixels, the generalized Hough transform integrates hits at

the m regularly spaced locations corresponding to a

particular consistent track. At each of these m locations,

a total of m frames are superimposed, so the hit count

originates over a total of m2 pixels.

For a background hit density of d hits/steradian, and a
2

pixel solid angle of x2 , the expected number of hits per

pixel is (x 2d). By the Poisson probability distribution,

the probability of obtaining no hit is:

P(no hit) = exp(-x 2d)
bkg

Therefore, the probability of obtaining a hit from chance

alone is:

P(hit) = [1-exp(-x 2d)]
bkg

The probability of a specific arrangement of S hits and

(m2 -S) non-hits is therefore

2 S 2 mr-S

[l-exp(-x 2d)] [exp(-x 2d)]

and the number of ways of arranging S hits over m 2 pixels

is:

(m2

( m 2_ ) !
(2 -S) ! 5!
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Therefore, the probability of obtaining a count of S hits

from chance hits alone with the generalized Hough transform

is:

(m2)! 2 s i 2-s

Pbkg(S) - 2 (l-exp(-x 2d)] [exp(-x 2d)](M _-S)! S!

For a threshold of T, the probability of declaring a false

track is:

2
m

Pfalse(T) E Pbkg(S)
S)T

In the absence of a background, the probability of detecting

a target on a single frame is taken as a. In the presence

of both a target and background, a hit may be declared from

the background alone, from the target alone or from the

target and background. The probability of not declaring a

hit is the product of the probabilities for not detecting

the target or the background:

Pnohit = [exp(-x 2 d)][l-a I.

The probability of declaring a hit in the presence of both

the target and the background is therefore:

Phit - [1-Pnohit] - l-(exp(-x 2d)1 [1-a I

A given target enters only m of the m2 pixels integrated by

the generalized Hough transform. Therefore the probability

of obtaining a hit count of S from the generalized Hough

transform is the convolution of the probabilities of

obtaining S' hits over the m pixels containing the target,

and (S-S') hits over the (m -m) pixels not containing the
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target. These separate probabilities are as follows:

m! so m-S'

Ptarget(S') = (Phit] [Pnohit]

(m-S') S'!

and,abd, (m2 _m)! (m2 -m-S+S') (S-S')

Pmmbkg(S-S')- [exp(-x 2d)] [1-exp(-x2d)](m -- +S ' I (S-S') !

Where the mm in Pmmbkg is a reminder for (m -m). The

probability of obtaining S hits between these two

distributions is:

m
Ptb(S) = , Ptarget(S') Pmmbkg(S-S').

S'=0

Therefore the probability of declaring a track in the

presence of a target with the generalized Hough procedure

is:

2
m

Ptrack(T) = F Ptb(S)
S)T
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MathCAD Computation

of ROC for Track Detection with the

Generalized Hough Transform
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ROC Curve Computation for Generalized Hough Transform Procedure with "hit" or
"no hit" Decisions at Individual Pixels

d 100000 d is the density of hits per steradian

m 10 m is the number of jointly processed frames

-6
x 100 10 x is the angular resolution (radians) of a pixel

y 0.1 y is the maximum track length during m consecutive frames

0.95 ,: is the probability of detection on a single frame in the
absence of a background

2
u x d

-3
u 1 10

ww (exp(u) - 1)

ww:= 0.001

W . 2! Theoretically, the maximum hit count is m'2, but for
Cmax := ceilLO.05 m A counts greater than roughly five percent of this the

probabililites turn out so low that we need not
compute them

N (Cmax + m)

S 0 ..N

Pbkg exp L-u m
0

Pbkg Pbkg-
S+1 S S + i
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-8
Pbkg 6.829-10

Crnax

NS Pbkg = 1

2
mm M- m

Pmmbg exp(-u mm)
0

(mm -S),(Ww)

Pmmbg Pmmbg
S+1 S + 1

k :=-m ..(Cmax + m)

Pmrnbkg (k) if Ik - 0, Pmmbg ,0
L k

Pmmbkg(Cmax) =4.027 10

Pmmbkg(0) =0.914

77Pmmbkg(S) =1

S

$ Pnohit (exp(-u)) (1I ~

Pnohit 0.05I Phit :=1 - Pnohit
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I

Phit = 0. 95

1 0 0

Ptarget(l) Phit (Pnohit)
(m-

i 1 .. (Cmax + m)

Ptb(i) : 7 1 Pmmbkg(i - I) Ptarget(l)

1

-4

Ptb(Cmax + 1) z 8.835 10

T := 0 .. (m + Cmax) Theoretically, the maximum hit count
is m'2, but even on a track it rarely
exceeds (m + Cmax).

Ptrack(T) (Ptb(i)) (M(i - T))

Pfalse(T) : Pbkg (A(i - T))

i

Ptrack(T_- Pfal se T

1.502 10-6.1 i -6
1i 3 625 10 i

0 ,-8
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0.92 -9

5 3

.659 10_ 6 10 -15
S1.439-10 SJ.74 5.10- 1 5

-8 0Q.
.2,43-10 10.

~~0~

the curve hugs the upper left
border and cannot be seen

Ptrack(T)

0
0 Pfalse(T)

0 ..(m + Cmax - 1)
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- Ptrack(j + 1) + Ptrack(j)
midarea : . (Pfalse(j) - Pfalse(j + 1))

2

Ptrack(m + Cmax) Pfalse(m + Cmax)
leftend

2

(1 + Ptrack(O)) (1 - Pfalse(O))

rightend
2

ROCarea (leftend + midarea + rightend)- Lj

ROCarea = 0.5

To compare the false traA: prcb~bility of streak detection with m superimposec
frames to the false track probability of the generalized Hough procedure
analyzed above, we must take into account the fact that streak detection
procedure simultaneously tests for a large number of tracks that must be
tested for individually if the generalized Hough procedure is used. To make
comparison, we must add up the probabilities for all combinations of false
tracks that are distinguished by the generalized Hough procedure that are
lumped onto a single streak if successive frames are superimposed. If the
generalized Hough procedure distinguishes R loci that all fall on the
same streak in the superimposed frame image, then this sum of probabilities
can be shown to equal the lefthand expression and approximately equal to the
righthand expression for large R:

R
1-(l-Pfalse) = (1l-exp(-R*Pfalse))

A count of all the loci distinguished by the generalized Hough procedure that
fall on a given streak yields for R the expression:
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R F~ 1 j '[rj 2
_2 L 1 __ m 1 1 ij _

4
R - 5.50610

t 0 ..(m + Cmax)

Pfalseall(t) (I - exp(-R}Pfalse(t)))

Pallfalse(t) if(t > O,Pfalseall(t),l) This step to to overcome
numerical problems when Pfalse
is 1.

Ptrack(t) Pa 11falseL

1 .. . .... ....

__ 1 .....Q ..0o!. . '

-5

________ -5---

-

0,05 9401-9

-5

10 -13- ._7- 1I0 10 ,
2-A--6 15
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the curve hugs the upper left
border and cannot be seen

Ptrack( t)

0 -_ _ _ _ _ _ _

0 Pallfalse(t)

j 0 .(n-1)

..,---iPtrack(j + 1) + Ptrack(j)
midarea -(Pallfalse(j) -Pallfalse(j + 1))

2

Ptrack(m) Pallfalse(m)
leftend--

2
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(1 + Ptrack(0)) (1 - Pallfalse(Q))
rightend - - - ---

2

RQCarea (leftend) + (midarea) + (rightend) -
ROCarea 0.5

thres 0 ..(m + Cmax -4)

Ptrack(thres)

-15 log(Pallfalse(thres)) 0
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ROC Curve Calculation for Track Detection in 3-D

A track will be designated by the 3-D method whenever a

threshold number T, of collinear hits, occur on m

consecutive image frames stacked in 3-D along the time axis.

If the number of chance hits occurring in m collinear

positions in this 3-D volume equals or exceeds T, a false

track will be designated.

For a sensor of angular resolution x (radians), each pixel
2will occupy x = xx steradians. With a random hit density

of d hits per steradian, xxd hits are expected over the

pixel solid angle of xx steradians. By Poisson statistics,

the probability of a pixel not having a hit is:

P(O) = (x2d) 0 exp(-x 2d) = exp(-x 2d).
xxd 0!

Therefore the probability of getting 1 or more chance events

leading to a hit is:

PM + P(2) +... + P(n) +...] = l-exp(-x 2 d)
xxd xxd xxd

The probability of S hits and m-S non-hits from the

background alone is given by:

Pbkg(S) = [l-exp(-x 2d)
S [exp(-x2d)]m

- S

S!(m-S)!

The sum of this expression for S>T to S-m gives Pfalse(T),

the probability of getting a false track along one

particular direction in the 3-D volume.
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The 3-D track detection procedure distinguishes tracks that

are lumped as a single track by the streak detection

approach. To make a correspondence between the probability

of false alarms for these two procedures, we must first make

a count of the number of 3 D tracks that correspond to a

single streak. Consider Figure 5, which shows (y/x)

distinct tracks in 3-D originating at a common pixel on the

first frame. All of these tracks fall on a single streak in

the 2-D projection of the frame data used for streak

detection.

Moreover, although the longest track fits only 1 way, the

next longest track (y/x-1 in length) fits on a streak of y/x

pixels 2 ways. Counting up all the possible shifts of a 3-D

track along the 2-D streak leads to the following arithmetic

sum for the number of 3-D tracks which fall on the same 2-D

streak:

(1+2+3+...+ y/x) = 1/2(y/x) (y/x +1).

As shown in the figure, this count must be multiplied by 2

to account for both rightward and leftward running tracks,

so the total number of distinct tracks in 3-D that are

lumped together as one streak in 2-D is:

(y/x) (y/x +1).

Critique: in making the above derivation, we have not

excluded from the count those 3-D tracks which straddle more

than a single pixel on a single image frame. As a rule,

pixel straddling will occur unless the target image is very

small compared to the pixels. But to keep our preliminary

analysis as simple as possible, we have been assuming that

the target image always falls into just one pixel on each
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frame 2
frame 2 y/x tracks originate
frame 3 from a single pixel on

f rame I

frame m I

pixels

f rame I -I

frame m
I way 2 ways 3 ways y/x ways

accounting for both
left and right heading
tracks doubles the

count

Figure 5. Top: y/x tracks are shown which all fall on

the same streak. Middle: the longest track fits only
I way, the next to longest 2 ways, etc. Bottom: the track

count is doubled when both leftward and rightward tracks
are accounted for.
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frame. To remain consistent, we must revise the track count

given above by counting only those 3-D tracks that progress

an integer number of pixels from frame to frame. Let q be
this integer. Over (m-1) frames the target will cover its

track length in increments of q. Generally, (m-l)q will be

less than y/x, so we have

(m-l)q + s = y/x

where s is the number of ways that the array of m hits may

be shifted along a maximum track length of y/x pixels. The

case of q=O corresponds to a motionless target, q=l to a

target that shifts just I pixel between frames, and so

forth. The largest permissible value of q corresponds to a

track that fits just 1 way into the maximum track length, or

(m-l)qmax + 1 = y/x; qmax = (y/x - 1)/(m-1).

So the revised 3-D track count is given by the sum of the

2s(q) from q=O to qmax' or from q=l to qmax' depending on

whether the motionless target case is to be included or not.

The factor of 2 is to include both rightward moving and

leftward moving tracks.

qmax qmax

2s(q) = E 2 [(y/x)-(m-1)q] =
q=l q=l

2
(y/x)/(m-l) - (y/x) + (m-2)/(m-1).

If we include the q=O case, and set m=2, the resultant sum

is

(y/x) (y/x + 1),

which is the same result we previously derived when we
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included tracks which straddled pixels on frames in-between

the first and the last. For m=2, there are no such frames,

and that's why the results are the same in this instance.

Which 3-D track count is correct? Since our ROC analysis so

far has considerd only the non-straddling tracks, and since

we have neglected the motionless target case, the relevant

track count Is given by the sum of 2s(q) from q=1 to qmax*

However, our ROC analysis would be more realistic if we

revised it to include pixel straddling, since in an actual

system, the target image will not be small compared to the

pixels. So the relevant 3-D track count depends on the

fidelity of of ROC analysis. Until we revise it to include

pixel straddling, the relevant count of 3-D tracks that

correspond to a single streak is given by

21
R = y/x)/(m-l) - (y/x) + (m-2)/(m-)J.

To compare the false track probability for streak detection

with the 3-D track detection false track probability derived

above, we must take into account the fact that a false track

encountered by streak detection may correspond to 1 or more

distinct false tracks in 3-D. In other words, the false

track probabilities we have derived for the streak detection

procedure and the 3-D track detection procedures are not

comparable. To make a correspondence, we must add up the
probabilities for all possible combinations of false tracks

in 3-D that are lumped onto a single streak in 2-D. We can

write down a relatively compact expression for this

probability by recognizing that if the probability of an

event e is P(e), the probability of a non-occurrence of e is

1-P(e). Rather than forming the sum of probabilities for

all of the possible ways 1 or more false 3-D tracks may
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occur, we form the probability for the non-occurrence of all

relevant false tracks.

We begin by expressing the probability that a particular 3-D

locus has less than the threshold T of hits needed to

designate a track in terms of (1- the probability that the

locus has T or more hits). Let S be the number of hits for

one particular locus. Then there is a probability of

M! 2 S 2 m-S
Pbkg(S) - (l-exp(-x d)] (exp(-x d)]

S!(m-S)!

that S hits are received along the locus, and that there are

no hits in the remaining m-S pixels along the locus. Since

the loci will satisfy the track criterion for T(S<m, the

probability of getting a false track for a particular locus

is:

m m! 2 2 mr-S

Pfalse(T) = M1 [-exp(-x 2d)] [exp(-x 2d)]

S=T S!(m-S)!

Therefore, the probability of not getting a false track

along a particular locus is:

I - Pfalse(T) -

m m! S 2 m-S
1- E [1-exp(-x d)] (exp(-x d)]

S=T S!(m-S) !

The probability of this occurring for all of the relevant

3-D loci falling on a single 2-D streak is given below with

R representing the number of relevant 3-D loci.
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[1 - Pfalse(T)]

R[ m M! 2 S 2 M-S]
1- 1-exp(-x d) exp(-x d)

S=T S!(m-S)!

Therefore, the probability of having one or more false

tracks on the R relevant loci is

R
1 - [1 - Pfalse(T)]

R
Fm M! 2 S2 -]

1- [ = [l-exp(-x d)] [exp(-x d) ] •S=T S! (m-S) !

This probability sums up all of the 3-D false track

probabilities which correspond to a false track designation

by the streak detection procedures.

If we let T=m, the expression reduces to:

R

1- [- (1-exp(-x2d)]

By the binomial expansion theorem, we may expand this

expression as a series. Then we obtain:

1- [1- _ 1-exp(x2 d)] + R(R-1)([1-exp(-x2 d) -
1! 2!

- [1-xl- m) - R(R-1) .l-exp(-x2 d)] 2m 1.
22m[R~ (1-exp(-x 2d)]m 2!-)(1epx2d +
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We now have the "machinery" to make comparisons of the false

alarm probabilities for any two track detection procedures A

and B. If procedure B distinguishes R tracks that are not

distinguished by procedure A, we expect that procedure A

will have a higher false track probability than B. To make

a comparison that takes into account the R times we would

have to apply procedure B to find a track that was found in

one application of procedure A, we compute

R1-(1-PB (false))

This expression corresponds to the probability of finding

one or more false tracks using procedure B over the loci

that are indistinguishable by procedure A. If procedure B

is better than procedure A over this class of loci, we will

have

RP A(false) > 1-(1-PB(false))

The direct comparison of P A(false) with PB(false) fails to

take into account that procedure A is capable of finding a

track along one or more of the R relevant loci in a single

test, while procedure B tests each locus individually.

To compare streak detection with the generalized Hough

procedure, the number of relevant loci is

qmax

R' = E s(q).
q=1

This is a factor of 2 less than the relevant track count for

the 3-D track procedure vs. streak detection, because the

generalized Hough procedure does not distinguish rightward
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moving tracks from leftward moving tracks. Hence we must

compare

P(false) with 1-(l-P(false))R '.

streak gH

To compare the 3-D track procedure with the generalized

Hough procedure, the relevant track count is R"=2, because

the 3-D procedure distinguishes rightward and leftward

tracks, while the generalized Hough does not. Therefore we

compare

P(false) with 1-(l-P(false)) 2

gH 3-D
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MathCAD Computation

of ROC for Track Detection Using the

Full 3-D Track History in Space and Time
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ROC Curve Computation for 3D Track Detection Procedure with "hit" or
"no hit" Decisions at Individual Pixels

d 100000 d is the density of hits per steradian

m 10 m is the number of jointly processed frames

-6
x 100-10 x is the angular resolution (radians) of a pixel

y 0.1 y is the maximum track length during m consecutive frames

0.95 :% is the probability of detection on a single frame in the
absence of a background

2
u x d

-3
u = 1 10

WW (exp(u) - 1)

ww = 0.001

S 0 .. M

Pbkg := exp(-u m)

(m - S) ww
Pbkg Pbkg

S+1 S S + 1

Pbkg 0
m

• ."Pbkg =1
S S
S
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Pnohit :=(exp(-u)) (1 -c.

Pnohit =0.05

Phit 1 - Pnohit

Phit 0.95

M! rn-S
Ptb((S) :=Phit (Priohit)

(m - S!S

Ptb(m) = 0.599

T -= 0.m

Ptract7T) = ~' Ptb(S)) ( i(S-T)

Pfalse(T) ' Pbkg (IS- T))
SL SJ

S
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Ptrack( T Pf a ise(T

L~ 1~-5
_At72 10_

-7
1-192-10

O.999 2 086 10
0,989 -13
0-914 2. 503 10
0,o.599 0

0

0
0

the curve hugs the upper left
border and cannot be seen

Ptrack(T)

0 Pfalse(T)

S: 0 .. (m - 1)
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midarea := -- Ptrack(j + 1) + Ptrack(j)miara(Pfalse(j) -Pfalse(j + }

Ptrack(m) Pfalse(m)
leftend

2

(1 + Ptrack(0)) (1 - Pfalse(0))
rightend

2

ROCarea (leftend + midarea + rightend)- 1-
ROCarea = 0.5

To compare the false track probability of streak detection with m superimposec
frames to the false track probability of the 3D procedure analyzed above, we
must take into account the fact that streak detection procedure simultaneously
tests for a large number of tracks that must be tested for individually if the
3D procedure is used. To make a comparison, we must add up the probabilities
for all combinations of false tracks in 3D that are lumped onto a singlestreak if successive frames are superimposed. If there are R loci in 3D (wherewe refer to 2D images stacked along a time axis as "3D"). then this sum of
probabilities can be shown to equal the lefthand expression and
approximately equal to the righthand expression for large R:

R
(1-(l-Pfalse) (1-exp(-R*Pfalse))

A count of all the loci in 3D that fall on a given streak yields for R the
expression:

21

R : + +

M -1 1
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5

R 1.121 10

t 0 . M

Pfalseall(t) (1 - exp(-R Pfalse(t)))

Pallfalse(t) if(t > OPfalseall(t),l) This step to to overcome
numerical problems when Pfalse
is I.

Ptrack t() Pallfalse (t)

_i5

L.-2 806a 6101-,1-8

-14i
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the curve hugs the upper left

border and cannot be seen

Ptrack(t)

o
0 Pallfalse(t)

j 0 .(m -1

K Ptrack(i + 1) + Ptrack'j)
midarea -- (PalIf alse( j) -PalIf alse( j + 1)

2

Ptrack(m) Pallfalse(m)
leftend -- _ _

2
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ROCarea (leftend) +- (ridarea) + (rightend)-
2:

ROCarea =0.5



ROC Calculations for Track Detection on Isometric Displays

An isometric display of the 3-D track record may be

generated for any desired 3-D perspective by offsetting each

frame in the superimposed stack by a spatial offset that

corresponds to the time of the frame. By varying the scale

factor of these offsets, the isometric display may be

changed to generate different perspectives of the 3-D track

record. Each perspective may be individually processed for

tracks using the streak or generalized Hough procedure.

Consider the effect of a perspective change on the

background hits that enter into the processing. With the

generalized Hough procedure, m pixels on each of m frames

contribute to the hit count. Only m of these m2  pixels

belong to a specific 3-D locus. The other (m -im) pixels

contribute background hits that reduce the reliability of

the "track" or "no track" decisions. After the isometric

display is changed by increasing or decreasing the

scale factor, the generalized Hough procedure may be

repeated; m of the pixels -- those belonging to the 3-D

locus of interest -- will remain in the set of pixels that

contribute to the hit count. The other (m -m) pixels

contributing to the previous hit count will be replaced with

a fresh set of (m2-ml pixels. If all m2 of the pixels were

freshly selected with each change of the isometric display,

the probability of obtaining k false alarms out of k

different isometric displays would be

kP (false),
bkg

and similarly, the probability of obtaining k track
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detections out of k different displays would be

pk(track).

t+b

However, the m pixels belonging to the 3-D locus of interest

will enter into the generalized Hough procedure for each of

the k isometric displays. The probability of getting S hits

from these m pixels will not be independent from display to

display. In the absence of a target, this probability,

whether on 1 display or 100 displays is given by

m!___ _ 2 mr-S 2
Pmbkg(S) = (exp(-x 2d)) (-exp(-x 2d)) ,

(m-S)!(S)!

where the m in Pmbkg is a reminder for m in the righthand

side of the equation. The probability of obtaining (S'-S)

hits over the remaining (m -im) pixels is given by

( n
2 _n(m -m -S '+ S ) (S '- S )

Pmmbkg(S'-S)=-in)! (exp(-x 2d)) (1-exp(-x 2d)) I
(m -m-S+S)!(S,-S)!

where the mm in Pmmbkg is a reminder for (m -m). Suppose S

hits do occur by chance over the m pixels comprising a

certain 3-D locus. Then a track will be detected provided

that S'>T hits occur on the (m -im) background pixels that

enter into the generalized Hough count. The probability of
2obtaining T or more hits over the (in + m - in) pixels

entering into the total generalized Hough count is

2
m -m m
Y_ E Pmbkg(S)Pmmbkg(S'-S).

S')T S=0
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Each time the isometric display is changed, a fresh set of

(m -im) pixels enter into the count, so the probability of

obtaining T or more hits on 2 different isometric displays

is

m 2 - m 2 -m m
Pf(T) = E E E Pmbkg(S)Pmmbkg(S'-S)Pmznbkg(S''-S).

S'')T S'>T S=O

Where Pf(T) denotes the probability of declaring a false

track with the isometric procedure. The generalization to

k>2 should be clear from this example. A similar argument

to that given above for Pf(T) shows that the probability of

detecting a track in the presence of both the target and the

background on 2 different isometric displays is

2 2m -m m -m m
Pt(T) = F Y Ptb(S)Pmmbkg(S'-S)Pmmbkg(S''-S).

S''>T S'>T S=O

The generalization of Pt(T) for k>2 should be clear from the

k=2 case shown above.

An expression for Ptb(S) where the tb stands for the

presence of both target and background events is derived as

follows. The probability of a pixel receiviii no hit is

given by the product of the probabilities of receiving no

hit from the target and the no hit from the background

Pnohit = (1-a )(exp-x 2d).

The probability of receiving a hit is then

Phit = (1 - Pnohit].

84



Thus, the probability of obtaining a hit count for S over

the m pixels on the 3-D track is

M! S rn-S
Ptb(S) =Phit Pnohit

(m-S)!(S)!
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MathCAD Computation

of ROC for Track Detection using

Multiple Isometric Displays of Sequential Image Frames
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kOC Curve Computation for Isometric Procedure used with the Generalized Hough
Transform Procedure with "hit" or "no hit" Decisions at Individual Pixels

0 := l0-UK)t) d is the density ot hits per steradian

m : 10 m is the number of jointly processed frames

-6
x := 1O010 x is the angular resolution (radians) of a pixel

y := 0.1 y is the maximum track length during m consecutive frames

a= 0.95 ar is the probability of detection on a single frame in the
absence of a background

2

U N= ' d

-7

u 1-0

ww := kexpiu) - 1)

ww 0.001

21 Theoretically, the max-imum hit count is m2, but for
Cma, := ceil L).(7 r, J counts greater than a +ew percent of this the

probabilities turn out so low that we need not comput
them

S 2' U .. m

Fmbg := e.p(-u m)

(m - S ww
Pmbg Fmbg

S+1 S S + I

Pmbg 0

m
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Pi;- mb g 1

o .. Cma', + rn)

rm: m -m

Pmmbkg :exp(-u-mm)

Pmmbkg Pmmbkg

k k -in (Cma< + m)

Fmmbg (kk) = iF [k . C0,Pmmbkqc

Plmmbg (Cmax<) o C

Fmmbq(0 C) .914

>F'rbg (j)

Pnohit (eXP(-I) ) (1 C)

Pnohit (-0.0)5

Phit I - Pnohit

Phit =0.95
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u p l o w . . . . .

1m1 1= 0 ..

m1 rn-i

Ptb(1) := Phit (Pnohit)
(- 1) 1!

T := 0 .. Cmax Theoretically, the maximum hit count
is m" 2, but even on a track it rarely

Si 0 .. (Cmax + m) exceeds (m + Cmax).

S2 0 .. (Cmax + m)

We let Pf(T) be the probability of getting a false track from chance events

alone when the track must appear on two isometric views:

Pf(T) := '>' S Pmbg Pmmbg(S1 - S)'Pmmbg(S2 - S)I(S1 - T)I(S2 - T)

S2 S1 S

We let Pt(T) be the probability of declaring a track when a target is present
and the track must show Lip on two isometric views;

Pt(T) 7N "S7i Ftb(S) Pmmbg(S1 - S) Pmmbq(S2 - S) I(S1 - T) I(S2 - T

S2 S1 S

Ft (T) Pf (T)

I 1
1 0' 17

1 i-4
1 1.:22' 10-

1 -7
1 6. 026 10
1 -9

0. 999 1 85 - 10
0.989 -12
0.915 4. 08510
0.601 -15

6. 735 10
0
0
0
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the curve hugs the upper left
border and cannot be seen

Pt (T)

- Pf (T)

0 (Cma'.: - 1

F't(] + i) +-4- (3

midarea Pt + (f (j) - Pf j + 1))

Pt (m + Cmax) Pf (rri + Cmax)
leftend

2

(1 +~ Ft(O))(1 - Pf(O0;

rightend 
-(

2

ROCarea (leftend + midarea + rightend) -

ROCarea = 0.5
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f To compare the false track probability of streak detection with m superimpose
frames to the false track probability of the isometric displa-y, generalized
Hough procedure analyzed above, we must take into account that the streak
detection procedure simultaneously tests for a large number of tracks that
must be tested for individually if the isometric display procedure is used.
To make a comparison, we must add LIp the probabilities for all combinations o
false tracks that are distinguished by the isometric display procedure that
are lumped onto a single streak if successive frames are superimposed. I+ th,
isometric display procedure distinguishes R loci that all fall on the same
streak in the superimposed frame image, then this sum of probabilities can be
shown to equal the lefthand expression and approximately equal to the
righthand expression for large R:

R

1- (1-Pf(T)) = (1-exp(-R*Pf(T))).

A count of all the loci distinguished by the isometric display procedure that
fall on a given streak yields the expression:

Ri:]
L-M - 1 _I

5

R = -. I-I -10

Pfalseall T) := (i - exp(-R F+ (T))

Pallfalse(T) ;= if (T > FFfalseal T). I Tris step is intenoeo to overcome
numerical problems when F f is 1.

Pt(T) Fal 1 false T)
1 1
1 1

1 '. 0164

1 -4
I 2. 0.7 10
1 -7

0.999 4.498-10
o. 989 -IC0
0.915 7.417-10
0.601 -13

9.354 10
0
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thres tj(

the curve hugs the upper left
border and cannot be seen

Pt (thres)

-15 IoQ(Pallfalse(thresY U
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3.3 Selection of Overlapping Receptive Fields for Uniform
Weighting

Many image processing procedures require local processing, rather

than global processing, for localized image features. Examples

are texture, local power spectra, and, in stereo pairs, stereo

disparity. Similar local processing is provided by the receptive

fields of a neural network. Although the processing is local,

the entire image must be covered, and this is accomplished by

overlapping the processing regions (or overlapping the receptive

fields of the neural network). It is desirable to overlap

roughly 50%, and at the same time weight each pixel in the

original image evenly, no matter what its registration is to the

boundaries of the local processing regions. In the case of 1-D

input data triangularly tapered receptive fields may be

overlapped to achieve a uniform weighting of all input samples;

see Figure 6. Since our data is 2-D, we need the 2-D analogy to

triangularly tapered receptive fields. Ideally, the receptive

field taper would be linear, or if not linear, an easily

calculated linear function. A step-function or "pill-box" shape

might also be satisfactory. The use of binary "on" and "off"

weighting eases computational costs, but might reduce

performance. For example, tapering is needed to minimize

artifacts caused by finite data sample lengths in power spectrum

estimation.

Fourier analysis may be used to verify the uniform weighting of

an overlapped receptive field function, g(x,y). The overlapping

corresponds to a convolution of g(x,y) with a discrete sampling

lattice. We require that this convolution be flat, so it can

only contain one Fourier component, dc. let the sampling

lattice that is used with g(x,y) be l(x,y). Then

F(l Q g) = F(l) F(g) = L(fx fy )G(f x,fy
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Figure 6. In one dimension, uniform weighting of an input layer
is achieved by triangularly tapered receptive fields
which are overlapped 50%. The sum of the overlapping
responses is a constant, as demonstrated by the sum of
the brackets in the figure.
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is zero except for fX = fy = 0. This is possible because the

Fourier transform of a sampling lattice is the "reciprocal

lattice" and hence is zero except at discrete frequencies. If

G(f x,f y) is zero at all of these discrete frequencies (except fx

= f = 0), the uniform weighting condition is satisfied.y

We may use this result to search for receptive fields that

provide uniform weighting with a given sampling lattice. As

illustrated in Figure 7 we need to find functions which are

non-zero at one sampling point of the reciprocal lattice, but

zero at all other lattice points. In l-D, the functions that

have this property are interpolation functions of the form

[sinc(f x) I sinrf ) I

where I is a non-zero integer power. In 2-D, we may construct

suitable interpolation functions as separable functions in fx and

fy' viz,

I NJ,
[sinc(f x)] [sinc(f ) J

where I and J are non-zero integer powers. The inverse Fourier

transform of these interpolation functions provides a set of

suitable receptive field functions for uniform sampling over a

square grid (or rectangular grid, if suitably scaled).

Hexagonal grids may be investigated similarly. In 2-D, an

interpolation function is required for the reciprocal hexagonal

lattice. Suitable interpolation functions may be constructed as

products:

I[sinc(f )] [sinc (-(Fi/2)f x+(/2)fy

where I and J are non-zero integers.
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Figure 7. G(f x , f ) must be zero at all points on the reciprocal

lattice except fx = fy = 0. Therefore, G(fx, f y) is an

interpolation function suitable for extending a

function sampled at the lattice nodes to continuous

values of fx and fY.
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The receptive field solutions provided above for square and

hexagonal sampling lattices do not provide all of the desirable

properties illustrated by the 1-D solution shown in Figure 6.

Simple to calculate "pill-box" receptive fields obtained with

I=J=l do not provide tapering; however for I and J > 1 the taper

is nonlinear. We have discovered that linear tapers can be used

while satisfying the condition of uniform weighting provided that

two different receptive field functions are allowed, and that non

Euclidean distance metrics are used to compute the taper. The

non-Euclidean metrics we use are the so called city-block or

taxi-cab metric, and the absolute value metric

d(1,2) = Ix 1 _x 21+Iy~2

An example is provided in Figure 8, which shows equi-level

contours for overlapping receptive fields; the receptive fields

are either diamond shaped or square shaped. This solution was

generated by first overlapping the diamond shaped receptive

fields, and after the overlapping was found to be non-uniform, a

second set of square receptive fields were added to attain

uniformity.
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Figure 8. Uniform weighting of an input layer is achieved in 2-D
with a system of two different receptive fields, each
tapered linearly. overlapping diamond receptive fields
satisfying an absolute value metric, and abutting
square receptive fields satisfying the city-block
metric provide the desired uniform weighting. Darker
lines indicating weights of 4, 3 and 1 illustrate the
sum of all fields sums to 8 at a representative point
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4.0 Appendix on Image Collection by a Scanning Sensor

The detected and sampled imagery output by a scanning sensor is

subject to three transfer functions. These transfer functions

correspond to:

1) image formation by the optical system

2) spatial integration over individual detector elements

3) temporal integration during the scanning process as a
result of charge build-up between detector readout
samples.

The transfer function of the optical system is determined by

actual testing in the optics shop, or in lieu of tests, by wave

optic or ray tracing simulations of the sensor performance. By

one of these methods, the point spread function of the image

formation optics is determined. This point spread function

generally varies in size and shape over the focal surface. Over

the useful field of view we may use the average point spread

function to characterize the optical system. The Fourier

transfer function of the average point spread function may be

used to characterize the transfer function of the image formation

system.

For the purposes of this discussion we assume diffraction-limited

optics with the Optical Transfer Function (OTF) cutting off at a

spatial frequency of (D/?.F) cycles per unit length across the

focal surface. (D = entrance pupil diameter, 1= optical

wavelength, and F = focal distance). This cut-off permits the

optical image to be reconstructed from a finite number of

discrete image samples. Even if the optics is not diffraction

limited, the imagery will be bandlimited to spatial frequencies

of less than (D/kF). As a practical matter, however, the

empirical point spread function may impose an effective bandlimit
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that is less than (D/AF). So let the bandlimit be given by f0
(for cut-off frequency).

For a incoherent imaging system fc = D/AF.

By the Nyquist sampling theorem, the sampling frequency must be >

2 fc to reconstruct the optical image from discrete samples.

Assuming the cut-off frequency is invariant with orientation,

this sampling criterion must be applied to both the horizontal

and the vertical image sampling. For example, in a staring focal

plane array, the center-to-center distances between neighboring

detectors elements should be less than or equal to 1/2f c. This

implies that the detectors elements are dimensioned no larger

thah 1/2f c x 1/2f c

The same principles apply to a scanning sensor, but in this case

the scan and cross-scan directions are distinguished by the

scanning process. In the cross-scan direction the in.age sampling

is performed by the detector elements, so the center-to-center

spacing must be 1/2f c. As shown in Figure 9 however, this may be

achieved either by sizing the detector elements 1/2f or less inc
the cross-scan direction, or by staggering the detector array so

that the sampling interval of 1/2f c is satisfied with a larger

cross-scan detector width.

In the scan direction, the sampling is performed by electronic

readout out time intervals of tau. For a focal surface scan rate

of v unit lengths per unit time the Nyquist criterion becomes

v(tau): i/2f c .

To improve system performance in the presence of photon or

readout noise, it is desirable to provide as much spatial

integration on the detector elements as possible. In other

words, the detectors should be as large as possible.
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t cross-scan direction

Nyquist sampling
interval

T- scan direction

Figure 9. A scanning focal plane array which has a detector
separation along the cross-scan direction satisfying

the Nyquist criterion can nonetheless have individual
detectors dimensioned twice the Nyquist interval.

Along the scan direction the dectector readout rate

(not the detector width) must satisfy Nyquist.
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In the staring sensor case, the detector size is fixed at 1/2fc x

l/2f c, and this small size is compensated for by temporal

integration. In the scanning sensor case the temporal

integration is limited by v(tau) 1/2fc . However, spatial

integration may be increased in the cross-scan direction by using

a staggered array as indicated in Figure 9. It is also possible

to use a technique known as TDI (for Time Delay and Integration)

in the scan direction.

In the case of a scanning sensor, a tradeoff must be made between

image resolution and spatial integration. As the detector

element size is increased, more spatial integration, and hence

larger readout charge levels are obtained. However, even if the

detector elements are staggered to maintain the sampling interval

at 1/2fc? the output imagery is degraded by the blurring

introduced with larger detector elements. This situation is

illustrated in Figure 10 which shows the transfer function

resulting from convoluting the optical image with detector

elements dimensioned "a" along the scan direction and "b" along

the cross-scan direction. The spatial integration (si) transfer

function is:

sin(trafs ) sin(,rbf
Tsi(f scan cross

(Ir abf scan fcross )

The first zeros of Tsi occur for fscan = 1/a and fcross = 1/b

respectively.

Since image information is lost at those spatial frequencies

where the transfer function is very small or goes to zero, we

must satisfy

1/a > fc and 1/b > fc
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Figure 10. Spatial integration transfer function T si(fscan,

fcross )  for a scanning detector array with

detectors dimensioned b along the cross-scan

direction and a along the scan direction. The

first zero of Tsi occurs for fscan = (1/a) and
f = (1/b).
cross :/)
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This condition limits the size of the detector elements. In the

cross-scan direction, the Nyquist condition on detector-to-

detector spacing derived above is 1/2fc. Therefore the 2:1

interleaving shown in Figure 9 is acceptable, but further

interleaving of 3:1 is prohibited since it introduces image

blurring that cannot be compensated for after detection.

The selection of dimension "a", the detector length along the

scan direction is complicated by the additional image blurring

along the scan direction which is introduced by temporal

integration on the detector elements during the time interval

between charge readouts. For a temporal integration period of

tau, the image is blurred by an additional convolution function,

as shown in Figure 11. The spatial integration discussed above

results in convolution by a rect function of width "a" in the

scan direction. Then temporal integration results in an

additional convolution by a rect function of width v(tau).

The transfer functions along the scan frequency direction for

spatial integration over the detector width of "a", and temporal

integration (ti) over a period of tau are given by

sin (af scan)

T (fscan = -, and
51 ?Tafscan

sin (v (tau) fscan)

Tti (fscan) =

7v(tau) fscan

The product of these transfer functions give the transfer

function for the scanning process along the scan direction. By

the Nyquist criterion, v(tau)< 1/2f Therefore Tti(fc) = 2/7

0.637. Since the image has no content at this spatial frequency,

the degradation introduced by T ti(fscan) is almost negligible.
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v(tau)

Figure 11. If a scanning detector moves at a speed v over the
image, and samples at intervals of tau, the image
is smeared by a rectangular convolution function
of width v(tau).
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Therefore we may use the same criterion for the degradation from

spatial integration along fscan as we chose along fcross' i.e., a

= 1/f . Thus, a reasonable set of parameters is a = b = 1/fc,

v(tau) = 1/2f c and interleaved detectors along the cross-scan

direction to achieve a detector-to-detector center spacing of

1/2f c . This selection of parameters will satisfy the Nyquist

criterion and avoid any zeros in the spatial integration and

temporal integration transfer functions within the bandlimit

imposed by the imaging optics. However, there will be some

degradation in the resolution along the scanning direction

because of the additional transfer function in this direction.

107



5.0 Appendix on Image Sampling Theory for Hexagonal and Square
Sampling Arrays

We show that hexagonal image sampling provides a reduction of 15%

in the number of samples needed to reconstruct a band limited

image without error, when compared with sampling with square

arrays. We note parenthetically that all optical images are band

limited.

The sampling operation can be thought of as multiplication of the

image with a 2-D lattice of sampling points. Since

multiplication in the spatial domain corresponds to convolution

in the Fourier domain, it is possible to analyze the result of

sampling by examining the convolution between the image Fourier

transform and the sampling lattice Fourier transform. This

correspondence is shown in Figure 12.

If the image has a cut-off frequency of fc' and the Fourier

transform of the sampling lattice a spacing of 2fc in Fourier

space, the convolution just satisfies the criterion that the

image transform is not overlapped (aliased). See Figure 13.

So if any of the step functions shown in Figure 14 multiply the

Fourier transform shown in Figure 13, nothing is lost from the

original band limited function.

By the Fourier convolution theorem, multiplication in the Fourier

domain corresponds to convolution in the spatial domain. So we

conclude that if the square sampling lattice has a spacing of

(1/2fc) or less, an interpolation function given by the transform

of step functions like those shown in Figure 14 may be used to

perfectly interpolate the original image from the discrete

lattice of samples.
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Figure 13. The sampled image has a transform given by the
convolution of the original image transform by
the reciprocal sampling lattice. The original
image transform is recoveralble provided there
is no overlap in the resultant transform.

To avoid overlap, the sampling lattice must be

spaced closely enough that the reciprocal lat-
tice is spaced widely enough to avoid overlap.
This is called the Nyquist criterion, and the
resultant sampled image transform is illustra-
ted above.
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Figure 14. Outlines of step functions that are equal to 1.0
over the non-zero portion of the image transform.
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The analogous sampling theorem for an hexagonal sampling array

requires that the Fourier transform of the sampling lattice also

avoid overlap of the image transform when the two functions are

convolved. See Figure 15.

By transforming the frequency domain hexagonal lattice of nearest

neighbor spacing 2 fc, we obtain the maximally spaced hexagonal

sampling array in the spatial domain. In the spatial domain, the

nearest neighbor spacing is (1/IT) (1/fc)-

We can obtain this Fcurier transform pair by thinking of the

hexagonal array of nearest neighbor spacing 2f as the

convolution of two line arrays of delta functions. The line

arrays are oriented at 60 degrees at each other, and the spacing

of delta functions along each array is 2 fc. See Figure 16.

Then the Fourier convolution theorem may be used to express the

transform of the Fourier domain hexagonal array as the product of

two knife-edge gratings in the spatial domain, as shown in Figure

17.

The nearest neighbor spacing in the spatial domain lattice turns

out to be (i//7)(/f c), as shown in Figure 18.

The area of the hexagonally-shaped pixels that fill out this

sampling array is (i/2/3) 1/(f c2). Compare this with the (1/22apln ara 1/41//22

fC)2 = 1/4(1/fc) 2 area of the square pixels filling out the

maximally separated square array. The ratio is (2/F3) = 1.1547.

For detection of point targets, this means that in the hexagonal

array the most centrally located pixel will collect roughly 15%

more energy from the point image than the most centrally located

pixel in a square array. Consequently, the signal-to-noise ratio

for point target detection will be more favorable if hexagonal

112



f /

overlap is avoided
in the Fourier
domain

Figure 15. If the image is sampled by an hexagonal array,
the reciprocal lattice is also hexagonal. If
the sampling satifies Nyquist, overlap is avoided
in the Fourier domain.
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Figure 16. The convolution of two line arrays of delta
functions oriented at 60 degrees to each other
produces an hexagonal array of delta functions.
This representation is handy for finding the
Fourier transform of an hexagonal array.

114



X9

9 U 
f

U U f

(1/2tU

(1/2Yt

Figure 17. The product of two knife edge arrays, oriented at
60 degrees to each other produces an hexagonal
array of delta functions.
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Figure 18. Calculation of the nearest neighbor spacing for

the hexagonal sampling lattice which satifies
Nyquist. The nearest neighbor spacing is I/f-fC °

The area of the hexagons that fill out the array
is given by ( )/2 3)( 1/(f 1)).

c
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sampling is used rather than 
square sampling. There will also be

only 0.866 as many pixels 
to read out of the detector 

array, and

so less power is dissipated near the focal plane by A/D

conversion. Finally, we have every reason to suspect that the

subsequent higher level processing will also be reduced, since

fewer pixels are needed to 
cover a given image area.
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